Inequality involving altitudes of a triangle.

https://www.linkedin.com/groups/8313943/8313943-6418854553294237699 In any triangle ABC with usual notions, prove that

 $(h a/a)^2 + (h b/b)^2 + (h c/c)^2 \ge 9/4.$

Proposed by Vasile Vanciu.

Solution by Arkady Alt , San Jose, California, USA.

Let *F* area of $\triangle ABC$ and let $\triangle(x, y, z) := 2xy + 2yz + zx - x^2 - y^2 - z^2$ Since $h_a = \frac{2F}{a}$ we obtain $\sum \left(\frac{h_a}{a}\right)^2 \ge \frac{9}{4} \iff 16F^2 \sum \frac{1}{a^4} \ge 9 \iff$ (1) $\triangle(a^2, b^2, c^2) \left(\frac{1}{a^4} + \frac{1}{b^4} + \frac{1}{c^4}\right) \ge 9$.

First note that inequality of the problem isn't holds for any triangle but holds holds for any non obtuse triangle.

Indeed, let $\triangle ABC$ be obtuse isosceles triangle with $C = 120^{\circ}$ and AC = BC = 1,

that is $a = b = 1, c = \sqrt{3}$. Then $F = \frac{\sqrt{3}}{4}$ and $16F^2 \sum \frac{1}{a^4} = 3\left(2 + \frac{1}{9}\right) = \frac{19}{3} < 9$. Since inequality

Since inequality

(2)
$$\Delta(a,b,c)\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) \ge 9$$

holds for any triangle with sidelengths a, b, c then inequality (1) holds for any acute angled triangle because in that case a^2, b^2, c^2 satisfies to triangle inequalities. Inequality (2) immediately follows from double inequality

$$\frac{9a^{2}b^{2}c^{2}}{a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}} \leq \frac{3abc(a+b+c)}{a^{2}+b^{2}+c^{2}} \leq \Delta(a,b,c)$$
[1].
Indeed,
$$\frac{9a^{2}b^{2}c^{2}}{a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}} \leq \Delta(a,b,c) \Leftrightarrow 9 \leq \frac{\Delta(a,b,c)(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2})}{a^{2}b^{2}c^{2}} = \Delta(a,b,c)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right).$$

Remains to prove that inequality $16F^2 \sum \frac{1}{a^4} \ge 9$ holds for any right angled triangles. Let $\triangle ABC$ be right angled triangles with hypotenuse *c*. Then $F = \frac{ab}{2}, c^2 = a^2 + b^2$ and

$$16F^{2}\sum_{a} \frac{1}{a^{4}} = 4a^{2}b^{2}\left(\frac{1}{a^{4}} + \frac{1}{b^{4}} + \frac{1}{(a^{2} + b^{2})^{2}}\right) = 4\left(\frac{(a^{2} + b^{2})^{2}}{a^{2}b^{2}} - 2 + \frac{a^{2}b^{2}}{(a^{2} + b^{2})^{2}}\right) = 4\left(t + \frac{1}{t} - 2\right), \text{ where } t := \frac{(a^{2} + b^{2})^{2}}{a^{2}b^{2}} \ge 4.$$

Since $t + \frac{1}{t}$ increase if $t \ge 1$ then $t + \frac{1}{t} \ge 4 + \frac{1}{4}$ for $t \ge 4$ and, therefore,
 $4\left(t + \frac{1}{t} - 2\right) \ge 4\left(4 + \frac{1}{4} - 2\right) = 9.$

1. Geometric Inequalities with polynomial $2xy + 2yz + zx - x^2 - y^2 - z^2$, Arkady Alt, OCTOGON MATHEMATICAL MAGAZINE vol. 22, n.2,

p.738, More inequality with Δ , after words "So it remains to prove:

1.
$$\frac{3abc(a+b+c)}{a^2+b^2+c^2} \le \Delta(a,b,c) \le \frac{8abc(ab+bc+ca)}{(a+b)(b+c)(c+a)}$$

2.
$$\frac{9a^2b^2c^2}{a^2b^2+b^2c^2+c^2a^2} \le \frac{3abc(a+b+c)}{a^2+b^2+c^2} \iff$$

$$3abc(a^2 + b^2 + c^2) \le (a + b + c)(a^2b^2 + b^2c^2 + c^2a^2)$$
."

Link:

http://www.equationroom.com/Publications/OCTOGON%20Mathematical%20Magazine/Geometric