Inequality involving altitudes of a triangle.

https://www.linkedin.com/groups/8313943/8313943-6418854553294237699
In any triangle ABC with usual notions, prove that $\left(h _a / a\right)^{2}+\left(h _b / b\right)^{2}+\left(h _c / c\right)^{2} \geq 9 / 4$.
Proposed by Vasile Vanciu.

Solution by Arkady Alt, San Jose, California, USA.

Let F area of $\triangle A B C$ and let $\Delta(x, y, z):=2 x y+2 y z+z x-x^{2}-y^{2}-z^{2}$
Since $h_{a}=\frac{2 F}{a}$ we obtain $\sum\left(\frac{h_{a}}{a}\right)^{2} \geq \frac{9}{4} \Leftrightarrow 16 F^{2} \sum \frac{1}{a^{4}} \geq 9 \Leftrightarrow$
(1) $\Delta\left(a^{2}, b^{2}, c^{2}\right)\left(\frac{1}{a^{4}}+\frac{1}{b^{4}}+\frac{1}{c^{4}}\right) \geq 9$.

First note that inequality of the problem isn't holds for any triangle but holds holds for any non obtuse triangle.
Indeed, let $\triangle A B C$ be obtuse isosceles triangle with $C=120^{\circ}$ and $A C=B C=1$,
that is $a=b=1, c=\sqrt{3}$. Then $F=\frac{\sqrt{3}}{4}$ and $16 F^{2} \sum \frac{1}{a^{4}}=3\left(2+\frac{1}{9}\right)=\frac{19}{3}<9$.
Since inequality

$$
\begin{equation*}
\Delta(a, b, c)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \geq 9 \tag{2}
\end{equation*}
$$

holds for any triangle with sidelengths a, b, c then inequality (1) holds for any acute angled triangle because in that case a^{2}, b^{2}, c^{2} satisfies to triangle inequalities.
Inequality (2) immediately follows from double inequality

$$
\begin{equation*}
\frac{9 a^{2} b^{2} c^{2}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}} \leq \frac{3 a b c(a+b+c)}{a^{2}+b^{2}+c^{2}} \leq \Delta(a, b, c) \tag{1}
\end{equation*}
$$

Indeed, $\frac{9 a^{2} b^{2} c^{2}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}} \leq \Delta(a, b, c) \Leftrightarrow 9 \leq \frac{\Delta(a, b, c)\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)}{a^{2} b^{2} c^{2}}=$ $\Delta(a, b, c)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)$.
Remains to prove that inequality $16 F^{2} \sum \frac{1}{a^{4}} \geq 9$ holds for any right angled triangles. Let $\triangle A B C$ be right angled triangles with hypotenuse c. Then $F=\frac{a b}{2}, c^{2}=a^{2}+b^{2}$ and $16 F^{2} \sum \frac{1}{a^{4}}=4 a^{2} b^{2}\left(\frac{1}{a^{4}}+\frac{1}{b^{4}}+\frac{1}{\left(a^{2}+b^{2}\right)^{2}}\right)=$ $4\left(\frac{\left(a^{2}+b^{2}\right)^{2}}{a^{2} b^{2}}-2+\frac{a^{2} b^{2}}{\left(a^{2}+b^{2}\right)^{2}}\right)=4\left(t+\frac{1}{t}-2\right)$, where $t:=\frac{\left(a^{2}+b^{2}\right)^{2}}{a^{2} b^{2}} \geq 4$.
Since $t+\frac{1}{t}$ increase if $t \geq 1$ then $t+\frac{1}{t} \geq 4+\frac{1}{4}$ for $t \geq 4$ and, therefore, $4\left(t+\frac{1}{t}-2\right) \geq 4\left(4+\frac{1}{4}-2\right)=9$.
1.Geometric Inequalities with polynomial $2 x y+2 y z+z x-x^{2}-y^{2}-z^{2}$, Arkady Alt, OCTOGON MATHEMATICAL MAGAZINE vol. 22,n.2,
p.738, More inequality with Δ, after words "So it remains to prove:

1. $\frac{3 a b c(a+b+c)}{a^{2}+b^{2}+c^{2}} \leq \Delta(a, b, c) \leq \frac{8 a b c(a b+b c+c a)}{(a+b)(b+c)(c+a)}$
2. $\frac{9 a^{2} b^{2} c^{2}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}} \leq \frac{3 a b c(a+b+c)}{a^{2}+b^{2}+c^{2}} \Leftrightarrow$

$$
3 a b c\left(a^{2}+b^{2}+c^{2}\right) \leq(a+b+c)\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) .
$$

Link:

http://www.equationroom.com/Publications/OCTOGON\ Mathematical\ Magazine/Geometric

